QUES 04 . A vehicle travels half the distance L with speed V₁ and the other half with speed V₂, then its everage speed is Let the vehicle travels from A to B. Distances, velocities and time taken are shown. To coloulate average speed we will calculate state distance covered and will diside by time minroll in which it covers that total Time taken to travel first half distance $t_1=\frac{L/2}{v_1}=\frac{L}{2v_2}$. Then taken to travel second half distance $t_2=\frac{L}{2v_2}$. Total time $=t_1+t_2$. The taken to $t_1=\frac{L}{2v_2}=\frac{L}{2v_1}+\frac{L}{2v_2}=\frac{L}{2}\left[\frac{1}{v_1}+\frac{1}{v_2}\right]$. We know that $v_n=Avrage speed$ — so all distance/botal time $v_{\rm ev} = \frac{L}{\frac{L}{2} \left[\frac{1}{v_1} + \frac{1}{v_2} \right]} = \frac{2 v_1 v_2^*}{v_1 + v_2}$ 2 (v v₂) Emportant patient should be useful that $v_{ee} = 2^{-1.2}$, but it is not the everage speed when two quad distances are covered by speed v_e and v_e the formulate II ($v_e = 0$, then $v_e = 2^{-1.2}$, decrange proof of equal v_e the sum of partial v_e and v_e the speed of equal v_e that the speed of v_e is the speed of v_e that v_e is the speed of in v_e is the speed of v_e in v_e is the speed of v_e in v_e is the speed of v_e in